
Transactional-Turn Causal Consistency

Benôıt Martin, Laurent Prosperi, and Marc Shapiro

Sorbonne-Université, CNRS, Inria, LIP6.
firstname.lastname@lip6.fr

Abstract. Function-as-a-Service (FaaS, serverless) computing systems
use an actor-like model that executes a function asynchronously, atom-
ically and in an isolated context. However, a function must often also
access state, e.g., memory or a database. This mixed model can break
the actor guarantees, leading to bugs, crashes and data loss. To avoid
this, we define Transactional-Turn Causal Consistency (TTCC). TTCC
unifies the Turn of the actor model with the Transaction of the database
model, under asynchronous, atomic and isolated execution, and guaran-
tees mutual consistency of messages and memory. We define the model
formally and present a reference implementation, along with preliminary
experimental evaluation.

Keywords: causal consistency · actor model · message-passing · shared-
memory · serverless

1 Introduction

This paper studies the issues that occur in a system that combines event- (or
message-)based and shared-memory communication, and proposes a solution.

For instance, in Function-as-a-Service (FaaS, serverless) computing, a compu-
tation is a set of functions that execute following the actor model [2, 10]. When
an actor receives an event or a message, this triggers a computation called a
turn, to run the function being called. A turn runs in parallel with other actors,
executes in the actor’s separate memory space, and is uninterrupted until it ter-
minates. Its results become visible only by sending more messages. We say an
actor is asynchronous, isolated and atomic. These features are pleasing for de-
velopers, who can leverage concurrency without having to worry about memory
interference, locking or deadlocks.

However, business logic often requires state; examples include video encoding,
file conversion or collaborative workspaces [1, 16]. For instance, a turn may
observe the memory state left by the previous turn in the same actor.1

Frameworks such as Orleans, Cloudflare Durable Objects, Lightbend Akka
Serverless or Azure Durable Entities allow an actor to store application state
in a database (Figure 1). A database computation, called a transaction, runs in

1 This may create consistency anomalies known as glitches [12]. Although not well
known, they are an indication that the actor model is underspecified.



2 B. Martin et al.

Fig. 1. A stateful serverless construct. Fig. 2. An inconsistency leading to a crash.

isolation and is atomic, i.e., its results become visible at once when the trans-
action commits. Transactions may be or not be asynchronous, depending on
the database’s isolation level (a.k.a. consistency model): under serializability,
transactions execute (logically) in lockstep; whereas under snapshot isolation
(SI), a transaction does not block but operates upon a private snapshot of the
database [4]. The lesser-known Transactional Causal Consistency (TCC) is fully
asynchronous, as it also supports concurrent writes [3, 14]. In summary, TCC
is also asynchronous, isolated and atomic; developers may leverage concurrency
without having to worry about memory interference, locking or deadlocks.

Unfortunately, even though the buzzwords align, actors and database remain
different worlds. The guarantees of one do not extend to the other. For instance,
despite a turn accessing isolated local memory, it can still suffer interference
via the database; and conversely, messages between transactions can defeat the
consistency guarantees of the database.

To illustrate, consider Figure 2, the timeline representation of Figure 1.
Database data items x and y are initially set to 0, and replicated at all nodes.
Node A updates y to 1, and notifies B with message m1. Node B updates x to
2, notifies node C with message m2. In response, C computes z = x/y. Unfor-
tunately, in existing systems, nothing stops m2 from being delivered before y is
replicated on node C. Because the message view and the database view are mu-
tually inconsistent, C computes z = 2/0, leading to a crash. Even if messages are
delivered in order, and even if the database guarantees strong consistency, main-
taining separate consistency guarantees fails to maintain mutual consistency and
violates the fundamental causality assumption.

To avoid such anomalies, we unify the actor/message-passing and the database/
shared-memory views of the world with Transactional-Turn Causal Consistency
(TTCC). TTCC combines an actor-style execution model with shared-memory
access, and equates turns with transactions. A transactional turn is isolated and
atomic, and executes asynchronously. TTCC ensures that information remains
consistent, whether carried in messages or in shared memory.

This paper contains the following contributions:



Transactional-Turn Causal Consistency 3

– The design and formalization of TTCC, a unified transaction-turn and memory-
message model, in Section 3.

– Algorithms for TTCC for actors accessing a shared database, in Section 4.
– Reference implementations thereof, in Akka (Section 5).
– An experimental evaluation, showing that TTCC in addition to providing

superior guarantees, TTCC can perform better than a non-unified algorithm.

2 Background

In summary, existing FaaS environments provide a mixture of asynchronous, iso-
lated computation execution models, and of inter-actor communication models.
What is lacking is a unified, consistent view across them. Therefore, this work
defines a common asynchronous and isolated execution model, and a common
consistent communication model.

2.1 Groundwork

A (distributed) system consists of any number of sequential processes, called
actors. Actors execute in parallel, and communicate via messages and shared
memory. A message may be point-to-point (from one actor to another, or to
itself) or multicast (from one actor to several). Our current treatment does not
consider failures.

A system may become inconsistent if events are observed in the wrong order.
Intuitively, causal consistency is the property that if some event emight influence
(cause) some event f , no actor could observe f before observing e.2 For instance,
in Figure 2, message m2 should not be delivered until after the update to y is
replicated to C.

Borrowing from Burckhardt [6] and Viotti and Vukolić [15], we model a
system execution using a multi-graph A = (E , vis) built on a set E of events.3

Events comprise send, receive, read and write operations. More specifically:

Program-order
PO−−→ is a binary relation over E that expresses the natural

execution order of operations by a process.
Visibility vis is a binary relation over E that describes the propagation of

information through the system. It satisfies the following rules:

1
vis−→ is acyclic.

2 It is transitive: ∀e, f, g ∈ E : e
vis−→ f ∧ f

vis−→ g =⇒ e
vis−→ g

3 Program order implies visibility:
PO−→⊆ vis−→

For instance, a is visible to b (i.e., a
vis−−→ b) means that the effects of a are

visible to the process invoking b. Two operations are said concurrent if they
are not ordered by vis.

2 Lamport [11] calls the relation between e and f “happened-before;” recent literature
uses the term “visible.” [6, 7, 15].

3 Burckhardt also defines a total arbitration order, but it is not necessary for our
purpose.



4 B. Martin et al.

2.2 Actor execution model

The classical actor model describes processes communicating only via messages.
An actor alternates between being ready to accept a message, and busy pro-
cessing a message. An actor responds to a message by doing local computation,
creating actors, and sending messages. A turn is the processing of a single mes-
sage. Actors conform to the following “Isolated-Turn Principle” of de Koster et
al. [9]:

– Continuous message processing: An actor’s turn terminates without inter-
ruption.

– Consecutive message processing: An actor processes messages from its own
inbox, and processes them one by one. Within a single actor, turns do not
interleave.

– Isolation: An actor can only access its own memory.

Thus, the actor is isolated, and the processing of a turn is free from low-level
data races. The programmer can reason about the application as a sequence of
isolated, functional turns.

2.3 Message-based communication model and causal delivery

We note messages m,n (messages are assumed unique); message-related events
are send and receive, noted send(m) and recv(m) respectively. A message is
causally delivered if and only if it satisfies the common rules 1 – 3 , as well as
the following:

4 A received message must be sent: rcv(m) ∈ E =⇒ send(m) ∈ E
5 A send precedes the corresponding receive: send(m)

vis−→ rcv(m)

6 A message does not overtake another message:

send(m)
vis−→ send(n) =⇒ ¬(rcv(n) PO−→ rcv(m))

Rule 5 states that m is visible when it is received, which is after it was

sent. Rule 6 defines the order in which messages m and n are made visible
(delivered). If an actor sends m, and later an actor sends n, a destination actor
must observe m before n.4

2.4 Shared-memory transactional execution model

We borrow our shared-memory execution model from Cerone et al. [7]. They
consider a database consisting of objects Obj = {x, y, . . . }. Events consist of
wr(x, v), writing version v to object x, and rd(x, v), reading v from x; a write
associates a new, unique version to the object being updated.

4 We use negation (¬) because a destination might receive only one of the messages.



Transactional-Turn Causal Consistency 5

Reads and writes are grouped into transactions. A transaction is a sequential
and isolated execution. Its writes become visible, atomically, to other trans-
actions only after it commits. Formally, we say transaction T is atomic iff:

∀e, f ∈ T ∧ g ∈ T ′ ̸= T =⇒ (e
vis−−→ g ⇔ f

vis−−→ g), i.e., either all of T ’s
effects are visible (T is committed), or none are (T hasn’t terminated yet or
aborted). In what follows, we consider only committed transactions.

A transaction operates on its own snapshot [5], which is a copy of the state
of the database at a given point in time. The snapshot ensures the transaction
executes without interference from concurrent transactions.

To formalize this intuition, we define the predecessors for x in transaction

T as predT (x) = {y | y
vis−−→ x ∧ y /∈ T}. T has the snapshot property iff:

x ∈ T ∧ y ∈ T =⇒ predT (x) = predT (y). In other words, all the reads of a
transaction come from the same set of committed transactions.

2.5 Shared-memory communication and causal consistency

Transactions communicate through the shared memory. A transaction’s commit-
ted updates can be transmitted asynchronously to another transaction’s snap-
shot, without waiting; this might cause inconsistency. An execution is causally
consistent for shared memory if and only if it satisfies the common rules 1 – 3 ,
as well as the following:

7 A version read must be written: rd(x, v) ∈ E =⇒ wr(x, v) ∈ E
8 A write precedes the corresponding read: wr(x, v)

vis−→ rd(x, v)

9 An update does not overtake another update:

wr(x, v1)
vis−→ wr(x, v2)

vis−→ wr(y, w) =⇒ ¬(rd(y, w) PO−→ rd(x, v1))

Rule 8 states that an update to object x with version v, is visible before

reading x. Rule 9 states that once an update, tagged with version v2, is visible,
then no subsequent operation can see a version prior to v2. In other words, only
the latest version of an object is visible.

3 Transactional-Turn Causal Consistency: unifying
messages and shared memory

To avoid the inconsistency in Figure 2, while maintaining a familiar execution
model, we propose to unify the asynchronous, isolated and causally consistent
properties of the message and memory models. We call this model Transactional-
Turn Causal Consistency (TTCC).

3.1 TTCC unified execution model

Our execution model equates an (actor) turn with a (database) transaction.
When an actor receives a message, this triggers a transactional turn. It reads



6 B. Martin et al.

from a snapshot that is causally consistent with the message received. When it
terminates, its writes and its sends become visible atomically.

The model allows a transaction to send no more than a single message per
destination actor. Otherwise, the result would not be atomic, as sending multiple
messages to the same actor would cause multiple sequential turns, each one ob-
serving only a subset of the transaction’s commit. If an actor must send multiple
message to the same destination, it can do so in multiple sequential turns.

3.2 TTCC unified causally-consistent communication model

In the unified model, actors communicate through any mixture of message-
passing and shared-memory access. An execution is causally consistent for shared
memory and messages if and only if it satisfies the common, message-passing,
and memory rules above 1 – 9 , as well as the following interaction rules:

10 An update does not overtake a message:

send(m)
vis−→ wr(x, v) =⇒ ¬(rd(m, v)

PO−→ rcv(m))

11 A message does not overtake an update:

wr(x, v1)
vis−→ wr(x, v2)

vis−→ send(m) =⇒ ¬(rcv(m)
PO−→ rd(m, v1))

These rules define visibility when messages interact with shared-memory op-

erations. Rule 10 states that if an actor writes version v to x knowing send(m),
then the receiving actor must receive m before observing version v for key x.

Conversely, Rule 11 states that if an actor sends m while knowing wr(x, v2),
then the destination actor must no longer observe the earlier v1 after receiving
m. Indeed, upon m reception, the receiving actor sees the send(m) causal de-

pendencies, i.e., wr(x, v1)
vis−→ wr(x, v2). Hence, the read must return v2, the

freshest visible version of x.

4 Unified message-memory protocol

In this section, we present a reference protocol that uses a unified version vector
(with one entry per node) to track causal dependencies for both messages and
shared objects. We present the causal delivery mechanism for messages as well
as replication for shared objects.

Our protocol assumes that values in shared memory are conflict-free data
structures (CRDTs) [13], which is helpful to resolve conflicts in concurrent up-
dates without coordination.



Transactional-Turn Causal Consistency 7

4.1 Overview

Our protocol executes in two phases: in an actor (when a transaction is executed
and when a message is received) and in a replicator actor that is unique per node.
Replicators of different nodes communicate with each other and are responsible
for maintaining transactions, snapshots and replication. A transaction opera-
tion (read, update, send message) runs inside an actor, and accesses an isolated
snapshot version that is managed by the local replicator. The replicator provides
the latest local, causally consistent snapshot to new transactions. A transaction
originating from the local node is immediately visible to local actors when it
commits, as local actors share the latest local snapshot. However, a transaction
arriving from a remote node is visible to local actors only after the preceding
transactions have committed locally.

Causal message delivery To implement causal message delivery, TTCC delays
messages until all its causal dependencies are satisfied. Conversely, sending a
message is non-blocking. Causal dependencies are propagated by piggy-packing
metadata to messages. For instance, if an actor sends m then n, the metadata
of n indicates that n causally depends on m.

Causal shared-memory To maintain causal consistency for shared memory, TTCC
maintains multiple versions of objects and exposes them through isolated snap-
shots. Write operations are non-blocking and replication is done asynchronously.
When reading an object, TTCC materializes only the requested value for the
given object, as opposed to all objects in the snapshot, to reduce compute and
memory consumption.

Memory-message interactions TTCC unifies causal consistency for shared mem-
ory and causal message delivery, by considering the interactions between the two
memory models. Messages are delayed until causally dependent messages are de-

livered (Rule 6 ) and shared-memory is up-to-date (Rule 11 ). A snapshot is

causally visible, when causally dependent snapshots are available (Rule 9 ).
Visibility of a snapshot is not delayed by causally dependent messages as the re-
ception of a message triggers an actor’s turn, which exposes a causally consistent
snapshot.

4.2 Notation and definitions

Table 1 introduces the notation followed in this section to describe the execution
of our protocols on an actor and on a replicator. We assume a singleton Repli-
cator R on each node. A snapshot S is a tuple composed of a version vector vvS
and a dataset dataS . The GSS is a snapshot that is known to be available on
all nodes at a given point in time. LLSS stores a set of local snapshots that are
committed. When the protocol updates GSS, snapshots from LLSS are merged
into GSS using CRDT logic. An ongoing transaction T is stored in ongoing at
index T . R stores its neighbor n’s version vector in kvv at index n. When kvv



8 B. Martin et al.

updates, the protocol recompute GSS. lastV V stores the latest Version Vector
seen by an actor.

R Local replicator actor
T Transaction
qT Queue containing messages for transaction T
S Snapshot
vvS Version vector of S
dataS Dataset of S

GSS Globally Stable Snapshot
LLSS Set of Locally Latest Stable Snapshots

ongoing[T ] Ongoing transaction is stored at index T
kvv[n] Known Version Vector for neighbor is stored at index n

m Message sent between a pair of actors
fromm Sender actor of m
vvm Version Vector of m

lastV V Last seen Version Vector
B Buffer for delayed messages

+ = CRDT merge operation
Table 1. Notation used in the protocol description.

4.3 Execution on an actor

Algorithm 1 shows the pseudo-code of the protocol for executing transaction T
and the reception of message m on a causal actor. Algorithm 1 is responsible for
message delivery (and delay) and transaction operations (begin, read, update,
commit, abort). A message is delayed if the local shared memory is not up-to-
date.

A transaction begins by sending a synchronous StartTransaction message to
the local replicator R, which contains a transaction id; we use a locally-generated
UUID, as it is unique and does not require coordination. R responds with an
initialized transaction snapshot, which contains the latest locally available snap-
shot, which is stored in LLSS. LLSS contains the latest local committed snap-
shots that are not yet merged into the GSS. If LLSS is empty, we use vvGSS .
Finally, if GSS is empty, we use an empty version vector.

Read and update operations send a ReadObject or UpdateObject message
to R respectively. R returns the object’s value in the transaction’s snapshot.

A message sent in a transaction is stored in a buffer qT until T commits or
aborts (Alg. 1, line 2). On commit, the actor sends a Commitmessage containing
the transaction id and qT to R. On abort, qT is emptied, and no messages are
sent.

When it receives a message (Alg. 1, line 28), the actor checks if m is causally
deliverable. A message m is causally deliverable if: (1) vvm ≤ lastV V ; (2)
vvm[fromm] < lastV V [fromm]; and (3) ∀d ∈ (vvm − vvm[fromm]), d ==
lastV V [d]. (Alg. 1, line 4 and 10). If m is not deliverable, it is appended to
buffer B. After the delivery of m, the protocol checks B for any other deliver-



Transactional-Turn Causal Consistency 9

able messages. lastV V is updated by being merged with the received message’s
version vector.

Algorithm 1 Execution of Actor a

1: function send msg(m, to)
2: append m to qT [to]
3: end function
4: function check dependencies(m)
5: deps← (vvm − fromm)
6: for all d ∈ deps do
7: return lastV V [d] == d
8: end for
9: end function
10: function is deliverable(m)
11: if vvm ≤ lastV V &
12: vvm[fromm] < lastV V [fromm] &
13: check dependencies(m) then
14: lastV V+ = vvm
15: return true
16: else
17: return false
18: end if
19: end function

20: function deliver causal messages
21: for all m ∈ B do
22: if is deliverable(m) then
23: deliver m
24: remove m from B
25: end if
26: end for
27: end function
28: function on message(m)
29: if is deliverable(m) then
30: deliver m
31: deliver causal messages
32: else
33: B ← m
34: end if
35: end function

4.4 Execution on Replication actor

Algorithm 2 shows the pseudo-code of the protocol for executing transaction T
on R.

When R receives a StartTransaction for T and T /∈ ongoing, the protocol
initializes the transaction context by appending the latest snapshot in LLSS
to ongoing[T ]. R replies with a message containing the latest vvLLSS , which
represents the latest locally available snapshot.

When R receives ReadObject, the protocol materializes the requested data.
The protocol requires that T ∈ ongoing. Value v for key k is: (1) materialized
from GSS, v is initially set to dataGSS ; (2) all values ≤ vvT ∈ LLSS are merged
into v, using the underlying CRDT merge operation. (3) finally, dataongoing[T ]

is merged into v. (See Alg. 2, line 7). An update for key k and value v updates
dataongoing[T ] for k with v. If T aborts, dataongoing[T ] is emptied and updates
are ignored.

When R receives Commit (Alg. 2, line 16), commit version vector cvvT is
initially set to the latest vvLLSS . If ongoing[T ] contains update operations or
qT is not empty, cvvT in incremented. The protocol then updates kvv[self ]
with cvvT to maintain an updated version vector for the current node. Then,
to terminate the commit and make the new snapshot visible to other actors,
dataT moves from ongoing into LLSS at cvvT . Finally, the resulting snapshot
is broadcast to all nodes.

On reception of a snapshot broadcast update message (Alg. 2, line 29), R
checks if vvS is concurrent with a snapshot contained in LLSS. This may be the



10 B. Martin et al.

case, as local transactions can commit without coordination with other nodes. If
vvS is concurrent, we merge vvS and dataS with vvLLSS[vvS ] and dataLLSS[vvS ]

respectively. Then, we update LLSS with the resulting snapshot. If vvS is not
concurrent, we update LLSS with S. Finally, kvv[from] is set to vvS before
updating GSS.

The replicator leverages the GSS mechanism that ensures progress by pe-
riodically broadcasting the latest local version vector to neighboring nodes [3].
This mechanism is useful to prune LLSS by merging snapshots into GSS for all
dataLLSS ≤ vvGSS . Note that high frequency updates may result in a high net-
work and compute overhead, while low frequency updates may result in longer
buffering and slow visibility of remote committed snapshots.

Algorithm 2 Protocol executed on Replicator R

1: function on prepare(T )
2: if ongoing[T ] does not exist then
3: ongoing[T ]← latest LLSS
4: return latest vvLLSS

5: end if
6: end function
7: function on read object(T , key)
8: value = dataGSS for key
9: value+ = dataLLSS for key
10: value+ = dataongoing[T ] for key

11: return value
12: end function
13: function on upd object(T , k, v)
14: put v in ongoing[T ] at k
15: end function
16: function on commit(T, vvT )
17: commitV v ← latest vvLLSS

18: if upd or msg ∈ ongoing[T ], incr
commitV v[self ]

19: kvv[self ]← commitV v
20: LLSS[commitV v]← ongoing[T ]
21: remove T from ongoing
22: trigger bcast(LLSS[commitV v])
23: end function

24: function trigger bcast(S)
25: for all n ∈ allNodes do
26: send SnapshotUpdate(S) to n
27: end for
28: end function
29: function on snap upd(from, S)
30: if vvS is concurrent then
31: vvS+ = vvS , vvLLSS

32: dataS+ = dataS , dataLLSS

33: update LLSS with vvS and dataS

34: else
35: update LLSS with vvS and dataS

36: end if
37: update kvv[from] with vvS
38: update GSS
39: end function
40: function update GSS
41: for i = 1, 2, . . . , size(kvv) do
42: vvGSS ← min(kvv[i])
43: end for
44: dataGSS = data from GSS
45: dataGSS+ = dataLLSS from vvLLSS un-

til vvGSS

46: GSS ← (vvGSS , dataGSS)
47: remove merged data from LLSS
48: end function

5 Implementation

We implement our unified memory model on top of the Akka actor framework.5

Akka is open source and enables actors to share data using eventual consistency
guarantees. An actor accesses data in the shared store through a replicator actor
that provides a key-value API and that handles data replication. Each node
spawns a singleton instance per node of a replicator actor. The replicator actor
spreads object updates to its neighbors via direct replication and gossip-based
dissemination.

5 https://akka.io/



Transactional-Turn Causal Consistency 11

In Akka’s key-value API, a key is a unique identifier of a CRDT data value.
Our solution consists in applying TTCC next to the existing Akka key-value store
by including additional protocols for an actor (Alg. 1) and replicator actor (Alg.
2), and additional metadata to guarantee transitive causal delivery of messages
and shared objects.

5.1 Causal shared memory

We add support for transactions by encapsulating an actor’s data in a causally
consistent snapshot. An actor sends a message and manipulates shared objects
within a transaction. A transaction begins by querying the local replicator for
the latest available snapshot from LLSS. Get and update operations affect only
the transaction’s snapshot. A get operation for a given key k, materializes the
value associated to k by reading from GSS, LLSS and the ongoing transaction
snapshot.

On commit, we compute a commit version vector and append the trans-
action’s snapshot to LLSS (Section 4.4). Then, the gossip-based replication
mechanism is triggered, which asynchronously broadcasts the newly committed
snapshot to other replicators.

5.2 Causal message delivery

A message sent in a transaction is associated with the transaction’s snapshot and
is causally sent to the recipient actor when the transaction commits. To ensure
atomicity, messages remain in a private buffer until the transaction commits. If
the transaction aborts, we delete the buffer.

On commit, we send the buffered messages, with an additional version vector
that represents the transaction snapshot, to the destination actor. On reception
of a message, the piggy-packed version vector is compared to the local replicator’s
version vector. Actors inherit the CausalActor class. This base class is responsible
for delaying delivery of messages until the context is causally consistent.

6 Evaluation

Our experimental evaluation address the following questions: What is the over-
head of unified causal consistency for messages and shared memory? How does
TTCC scale on multiple nodes?

6.1 Experimental protocol

We implement four protocols in a transactional key-value store (KVS) that sup-
ports messages. Protocol 1, which is our baseline that does not guarantee causal
order. Protocol 2, our reference protocol that uses a single version vector (Section
4). Protocol 3, which adds a matrix to track causality with messages. Protocol
4, that ensures causality for messages and shared memory independently. In this



12 B. Martin et al.

protocol, inconsistencies between messages and shared memory may happen if a
message is delivered before shared memory is up-to-date. We implement all four
protocols using the Akka actor framework.

To conduct performance benchmarks, we modify YCSB [8] (version 0.17.0)
to include messages and transactions 6 that we call YCSB+MT.

We provide a custom YCSB+MT workload that is similar to the original
YCSB workload where read and write operations are run in equal proportion.
Our transactional Workloads A and B executes read, update and message opera-
tions in the following proportions: 90%/5%/5% for Workload A and 5%/90%/5%
for Workload B. We compare protocols 2 and 3 against protocol 4 to evaluate
the overhead of mutual causal consistency.

We run the performance experiments on multiple nodes, each equipped with
two Intel Xeon E5-2690v3 clocked at 2.60 GHz with 192 GB of memory.

We deploy up to ten instances (i.e., replicas) of our key-value service. Each
KVS instance has its corresponding YCSB+MT client that we configure (16
threads each), to reach maximum throughput (ops/s) on each KVS. We measure
the overall throughput and latency while increasing the number of nodes.

The size of a version vector is proportional to the number of nodes. In our
experiment, we scale up to ten nodes. In Protocol 3, the size of the matrix is
equal to the number of actor pairs, which in our experiment scales up to the
number of concurrent YCSB+MT threads (16 threads).

6.2 Results

We measure the overhead of protocol 2 and protocol 3 by comparing them with
protocol 4 (non-unified). Our results show that protocol 4 performs better in all
workloads. We explain this by the lesser number of constraints that the protocol

enforces (i.e., rules for interaction. Rules 10 and 11 ).

Protocol 3 (extra matrix), performs the worst and does not scale past 4 nodes.
We explain this by the cost of maintaining an extra matrix, which is both costly
in transferred data and computation. For this reason, we exclude protocol 3 in
the following result interpretation.

For read operations, protocol 2 (single unified version vector) performs with
an overhead of up to 1.55× compared to protocol 4. We explain this by the
required delay caused by our protocol to maintain mutual causal consistency.
Furthermore, data is re-materialized for all requested values. Caching material-
ized data would greatly benefit read performance.

Write operations show a similar trend to read operations. Protocol 2 per-
forms with an overhead of up to 1.14× compared to protocol 4. We explain
this by the use of isolated snapshots, which enables concurrent writes without
synchronization.

Our results show that message delivery also shows a similar trend compared
to protocol 4 but is more dependent on write operations. Workload B (90%

6 GitHub link: https://github.com/benoitmartin88/YCSB



Transactional-Turn Causal Consistency 13

writes) shows a significant increase in message response time compared to work-
load A, where there are less write operations. This increase in message delay
is explained by the addition of required causal dependencies due to more write
operations. Protocol 2 performs with an overhead of up to 2.43× compared to
protocol 4.

Our experiments show that TTCC performs, in all workload conditions, sim-
ilarly than a non-unified causally consistent implementation. More importantly,
the overhead of maintaining mutual causal consistency scales up to ten nodes
while providing a reasonable response time.

Fig. 3. Transactional workload A (90R/5W/5M)

Fig. 4. Transactional workload B (5R/90W/5M)

7 Conclusion

In this paper we describe a transactional, causally consistent, unified model for
message passing and shared memory, which supports asynchrony and isolated
execution. TTCC is compatible with actor-based frameworks and provides an
intuitive memory model that ensures that multiple pieces of information remain
mutually consistent, whether sent using messages or shared in a distributed
memory.

We presented our protocols and actor-based reference implementation. Our
evaluation shows an overhead in response time of 1.55×, 1.14× and 2.43× for
read, write and messages respectively, compared to two independent causally
consistent memory models.



Bibliography

[1] Netflix & AWS lambda case study, https://aws.amazon.com/solutions/case-
studies/netflix-and-aws-lambda/

[2] Agha, G.A.: ACTORS: A model of concurrent computation in dis-
tributed systems (1985), https://dspace.mit.edu/handle/1721.1/6952, ac-
cepted: 2004-10-20T20:10:20Z

[3] Akkoorath, D.D., Tomsic, A.Z., Bravo, M., Li, Z., Crain, T.,
Bieniusa, A., Preguiça, N., Shapiro, M.: Cure: Strong seman-
tics meets high availability and low latency. pp. 405–414.
Nara, Japan (Jun 2016). https://doi.org/10.1109/ICDCS.2016.98,
http://doi.ieeecomputersociety.org/10.1109/ICDCS.2016.98

[4] Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E.,
O’Neil, P.: A critique of ANSI SQL isolation levels. SIGMOD
Rec. 24(2), 1–10 (May 1995). https://doi.org/10.1145/568271.223785,
http://doi.acm.org/10.1145/568271.223785

[5] Bernstein, P.A., Goodman, N.: Multiversion concurrency control - theory
and algorithms. ACM Transactions on Database Systems 8(4), 465–483
(1983). https://doi.org/10.1145/319996.319998

[6] Burckhardt, S.: Principles of Eventual Consistency, Founda-
tions and Trends in Programming Languages, vol. 1. Now
Publishers (Oct 2014). https://doi.org/10.1561/2500000011,
http://research.microsoft.com/pubs/230852/final-printversion-10-5-14.pdf

[7] Cerone, A., Bernardi, G., Gotsman, A.: A framework for transac-
tional consistency models with atomic visibility p. 14 pages (2015).
https://doi.org/10.4230/LIPICS.CONCUR.2015.58

[8] Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears,
R.: Benchmarking cloud serving systems with YCSB. In: Proceed-
ings of the 1st ACM symposium on Cloud computing. pp. 143–
154. SoCC ’10, ACM (2010). https://doi.org/10.1145/1807128.1807152,
https://doi.org/10.1145/1807128.1807152

[9] De Koster, J., Van Cutsem, T., De Meuter, W.: 43 years of ac-
tors: a taxonomy of actor models and their key properties. In:
Proceedings of the 6th International Workshop on Programming
Based on Actors, Agents, and Decentralized Control. pp. 31–40.
AGERE 2016, ACM (2016). https://doi.org/10.1145/3001886.3001890,
https://doi.org/10.1145/3001886.3001890

[10] Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR formalism
for artificial intelligence. In: Proceedings of the 3rd International Joint Con-
ference on Artificial Intelligence. pp. 235–245. IJCAI’73, Morgan Kaufmann
Publishers Inc. (1973), event-place: Stanford, USA

[11] Lamport, L.: Time, clocks, and the ordering of events in a dis-
tributed system. Communications of the ACM 21(7), 558–565 (1978).
https://doi.org/10.1145/359545.359563



Transactional-Turn Causal Consistency 15

[12] Mogk, R., Baumgärtner, L., Salvaneschi, G., Freisleben, B., Mezini, M.:
Fault-tolerant distributed reactive programming. In: 32nd European Con-
ference on Object-Oriented Programming, ECOOP 2018, July 16-21, 2018,
Amsterdam, The Netherlands. pp. 1:1–1:26 (2018)

[13] Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free repli-
cated data types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011 -
13th International Symposium on Stabilization, Safety, and Security of Dis-
tributed Systems (SSS). Lecture Notes in Computer Science, vol. 6976, pp.
386–400. Springer (2011), https://hal.inria.fr/hal-00932836

[14] Toumlilt, I., Sutra, P., Shapiro, M.: Highly-available and consistent group
collaboration at the edge with Colony. pp. 336–351. ACM/IFIP, Québec,
Canada (online) (Dec 2021). https://doi.org/10.1145/3464298.3493405,
https://doi.org/10.1145/3464298.3493405

[15] Viotti, P., Vukolić, M.: Consistency in non-transactional distributed storage
systems (2016), http://arxiv.org/abs/1512.00168

[16] Warden, J.: Large step function data – dealing with eventual consistency in
s3 – software, fitness, and gaming, https://jessewarden.com/2020/09/large-
step-function-data-dealing-with-eventual-consistency-in-s3.html


